tick.simulation.weights_sparse_exp

tick.simulation.weights_sparse_exp(n_weigths: int = 100, nnz: int = 10, scale: float = 10.0, dtype='float64') → numpy.ndarray[source]

Sparse and exponential model weights generator

Instance of weights for a model, given by a vector with exponentially decaying components: the j-th entry is given by

for 0 <= j <= nnz - 1. For j >= nnz, the entry is zero.

Parameters

n_weigths : int, default=100

Number of weights

nnz : int, default=10

Number of non-zero weights

scale : float, default=10.

The scaling of the exponential decay

dtype : {'float64', 'float32'}, default=’float64’

Type of the arrays used.

Returns

output : np.ndarray, shape=(n_weigths,)

The weights vector

Examples using tick.simulation.weights_sparse_exp