tick.survival.CoxRegression

tick.survival.CoxRegression(penalty='l2', C=1000.0, solver='agd', step=None, tol=1e-05, max_iter=100, verbose=False, warm_start=False, print_every=10, record_every=10, elastic_net_ratio=0.95, random_state=None, blocks_start=None, blocks_length=None)[source]

Cox regression learner, using the partial Cox likelihood for proportional risks, with many choices of penalization.

Note that this learner does not have predict functions

Parameters

C : float, default=1e3

Level of penalization

penalty : {‘none’, ‘l1’, ‘l2’, ‘elasticnet’, ‘tv’, ‘binarsity’}, default=’l2’

The penalization to use. Default is ‘l2’, namely Ridge penalization

solver : {‘gd’, ‘agd’}, default=’agd’

The name of the solver to use.

warm_start : bool, default=False

If true, learning will start from the last reached solution

step : float, default=None

Initial step size used for learning. Used when solver is ‘gd’ or ‘agd’.

tol : float, default=1e-5

The tolerance of the solver (iterations stop when the stopping criterion is below it). By default the solver does max_iter iterations

max_iter : int, default=100

Maximum number of iterations of the solver

verbose : bool, default=True

If True, we verbose things, otherwise the solver does not print anything (but records information in history anyway)

print_every : int, default=10

Print history information when n_iter (iteration number) is a multiple of print_every

record_every : int, default=10

Record history information when n_iter (iteration number) is a multiple of record_every

Attributes

coeffs : np.array, shape=(n_features,)

The learned coefficients of the model